
Django Computed Property
Documentation

Release 0.1

Jason Brechin

Jul 28, 2019

Contents

1 Prerequisites 3

2 Installation 5

3 Usage 7
3.1 Field types . 8

4 Contributing 9
4.1 Reporting Issues or Suggestions . 9
4.2 Adding Test Cases . 9

i

ii

Django Computed Property Documentation, Release 0.1

Computed Property fields for Django models, inspired by Google Cloud NDB

Contents 1

https://cloud.google.com/appengine/docs/standard/python/ndb/entity-property-reference#computed

Django Computed Property Documentation, Release 0.1

2 Contents

CHAPTER 1

Prerequisites

django-computed-property supports (i.e. is tested on) Django 1.8 - 2.2 and trunk on Python 2.7, 3.4, 3.5, 3.6,
3.7, pypy, and pypy3.

SQLite and Postgres are currently tested, but any Django database backend should work.

3

http://www.djangoproject.com/

Django Computed Property Documentation, Release 0.1

4 Chapter 1. Prerequisites

CHAPTER 2

Installation

django-computed-property is available on PyPI. Install it with:

pip install django-computed-property

5

https://pypi.python.org/pypi/django-computed-property/

Django Computed Property Documentation, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Usage

Add computed_property to your list of INSTALLED_APPS in settings.py:

INSTALLED_APPS = [
...
'computed_property'

]

Then, simply import and use the included field classes in your models:

from django.db import models
from computed_property import ComputedTextField

class MyModel(models.Model):
name = ComputedTextField(compute_from='calculation')

@property
def calculation(self):

return 'some complicated stuff'

You can read values from the name field as usual, but you may not set the field’s value. When the field is accessed
and when a model instance is saved, it will compute the field’s value using the provided callable (function/lambda),
property name, or attribute name.

compute_from can be a reference to a function that takes a single argument (an instance of the model), or a string
referring to a field, property, or other attribute on the instance.

Note: It is important to note that your computed field data will not immediately be written to the database. You must
(re-)save all instances of your data to have the computed fields populated in the database. Until you do so, you will be
able to access those fields when you load an instance of the model, but you will not benefit from their queryability.

One way you could do this is in a data migration, using something like:

7

Django Computed Property Documentation, Release 0.1

for instance in MyModel.objects.all().iterator():
instance.save()

3.1 Field types

Several other field classes are included: ComputedCharField, ComputedEmailField,
ComputedIntegerField, ComputedDateField, ComputedDateTimeField, and others. All field
classes accept the same arguments as their non-Computed versions.

To create an Computed version of some other field class, inherit from both ComputedField and the other field
class:

from computed_property import ComputedField
from somewhere import MyField

class MyComputedField(ComputedField, MyField):
pass

8 Chapter 3. Usage

CHAPTER 4

Contributing

Please also refer to the contributing docs in the repository.

On top of the above, developers please consider the following:

4.1 Reporting Issues or Suggestions

If you see an issue with the library or have a request for new functionality, please file an issue in GitHub.

Please include specifics about which version of Python you’re using, as well as which version of the django-computed-
property library you’re using.

Whenever possible, include a code sample that demonstrates the issue you’re seeing or the desired developer experi-
ence.

4.2 Adding Test Cases

The complete test suite is run using tox. This is how tests are run on Travis-CI, it includes all supported Python
versions, all supported databases back ends, and all supported Django versions. Arguably not what you would want to
do, each time you add a test case, or make a minor change.

To run the test suite in just one version of Python, against sqlite3, and using one chosen Django version, you still use
tox, instructing it to just test that single configuration combination.

You can enumerate all the build configurations with tox -l. From that list, you can choose the combination of
python-django-database (or the py37-docs or py37-flake8 builds) to run.

For example:

$ tox -e py37-django111-sqlite

Tox generally just requires that the version of python you’re testing against is installed on your system. It will take
care of creating the test environment from the configuration information in tox.ini.

9

https://github.com/brechin/django-computed-property/blob/master/CONTRIBUTING.rst

	Prerequisites
	Installation
	Usage
	Field types

	Contributing
	Reporting Issues or Suggestions
	Adding Test Cases

